Proprietary process technology

Styrene-Isoprene-Styrene block copolymers

eniveralis
Our company

Versalis – the petrochemical subsidiary of Eni – is a dynamic player in its industry sector facing the multifold market needs through different skills.

With a history as European manufacturer with more than 50 years of operating experience, Versalis stands as a complete, reliable and now global supplier in the basic chemicals, intermediates, plastics and elastomers market with a widespread sales network.

Relying on continuous development in its production plants as well as in its products, strengthening the management of the knowledge gained through its long industrial experience, Versalis has become a worldwide licensor of its proprietary technologies and proprietary catalysts. The strong integration between R&D, Technology and Engineering departments, as well as a deep market expertise, are the key strengths for finding answers to customers requirements.

Our commitment to excellence, in quality of our products and services, makes our company an active partner for the growth of customers involved in petrochemical business.

Through engineering services, technical assistance, marketing support and continuous innovation, our knowledge is the key strength to customize any new project throughout all phases.

Customers can rely on this strong service-oriented outlook and benefit from a product portfolio that strikes a perfect balance of processability and mechanical properties, performance and eco-friendliness.

Versalis proprietary process technologies available for licensing
Introduction to Versalis SIS technology

SIS copolymers, made by styrene and isoprene linked homopolymer blocks, belong to the class of thermoplastic elastomers (TPE), whose elastic behaviour - the properties to change and recover the shape when a force is first applied and then removed - and thermoplastic behaviour - the property to become softer, viscous and free-flowing like a liquid when heated and return solid when cooled at room temperature - are joined together in the same material. This class of TPE finds its extensive usage in adhesive field where represents the basis of pressure sensitive adhesives and hot melts.

In pressure sensitive adhesives application, adhesive forms a bond when pressure is applied to marry the adhesive with the adherend, in a typical composition, elastomers are mixed with tackifying resins, oil and then applied to a substrate where retains tack properties even when solidified, typical applications are pressure sensitive tapes, labels and note pads. Among thermoplastic styrene-diene block copolymers, a class of polymer largely preferred in this application, SISs result to be the elective material because the low elastic modulus which allows an easy adhesion under the simply pression normally exercised with a finger. Addition of plasticizers reduces cost; improves pressure-sensitive tack, decreases melt viscosity, decreases hardness, and improves low-temperature flexibility.

Hot melt adhesives is a form of thermoplastic adhesive resulting from combination of tackifying resins, rubber plasticizers and waxes added to adhesive composition in order to impart various properties. Adhesives bonds derived from hot melts are particularly useful because they quickly form tough adhesive bonds simply by cooling avoiding any solvent. Versalis SIS technology is well-known for its high flexibility in tailoring the different product grades required by the SIS market which is characterized by a continuous product innovation to meet new application requirements. Versalis SIS technology allows then competitive production of the most common SIS grades, as well as additional grades for special applications.

Key features of Versalis SIS production technology are:

- High flexibility in terms of product mix and good quality constancy and reproducibility;
- High plant capability as well as easy operability, due to both specifically designed feeding system for chemicals and batch automation;
- Cyclopentane, cyclohexane or blend highly compatible with all different polymer compositions, can be used as solvent depending on local climate conditions;
- High purity linear triblock polymers are allowed by the proper selection of halosilane structure as coupling agent;
- Process design advanced features in polymerization and purification sections;
- Optimized configuration of the stripping section with three stages arrangement to minimize steam consumption without impact emissions of VOC;
- Small quantity of volatile organic compounds (Solvent) enter finishing section (low-release during extrusion).

Versalis can always provide appropriate solutions to different client’s needs thanks to its capabilities and experience in the following fields:

Research & Development

The presence of a strong R&D team, established in Ravenna since the early 70s, qualifies Versalis as an outstanding owner of know-how in the field of elastomers. Reliable and updated facilities (pilot plants, synthesis and analytical labs, equipment for elastomer processing), allow Versalis to continuously up-to-date the technology in order to support the elastomers business in a very competitive and demanding market scenario. Additional services are then available for potential Licensees, such as technical assistance, training, development of analytical methods, site assistance for start-up and follow up, development of tailor made products on demand.

Process design & operational experience

Process design is flexible and able to face different conditions and constraints. Any project is individually evaluated to offer the best solution, tailored to specific customers needs. Thermal and fluidodynamic analysis (CFD) can be applied to the design of key equipment such as reactors, agitators and strippers. The design takes also advantage of the Versalis long-term manufacturing experience.

New technological solutions are first tested in production plants and the acquired experience transferred to the licensed technology in order to reach not only the best process performances, but also a safe and reliable plant arrangement.

Mechanical design

Versalis Engineering Dept. has been working in close coordination with the Process Dept. since a long time. This fact has allowed to develop unique and well sound engineering solutions for critical equipment, that guarantee the best results in terms of mechanical reliability and process performances. Versalis SIS technology allows to produce with a single line a fairly broad range of economically feasible capacities, up to 50 ktpy per reaction line with capacity up to 30 ktpy per single finishing line.

Wastes and emissions

The design of the plant is carried out taking into account the target of the minimization of the effluents, as this means more efficiency and lower environmental impact. The process produces only waste water which can be treated in a normal bio-treatment. Large waste air emissions from finishing require only a scrubbing process (dextusing). Some selected exhaust streams are usually sent to a regenerative-type thermal oxidizer (SBOL) in order to minimize the environmental impact of the process. Normal process venting are collected and can be sent to flare or other OSBL systems. Solid waste material, during normal operation, is limited to small amounts of filtering elements, plastic cans used as chemicals’ package and rubber cleanings from paved areas.

Industrial applications

Versalis is currently one of the major industrial producer of SIS polymer. Two industrial units worldwide, in Italy and US, are currently based on Versalis proprietary SIS technology. The Italian plant, is on stream since 1970 based on a current 90 ktpy capacity (including SBS types), which has been reached throughout two plant reworkings, in 1991 and in 2001. The US plant is on stream since 1992 based on a current 45 ktpy capacity (including SBS types), since 2003 this plant is no longer property of Versalis.
Material properties are mainly dictated by the ratio between polystyrene and polyisoprene amounts as well as by the molecular weight of the homopolymer blocks. At microscopic scale, low styrene content elastomers show a morphology of polystyrene spheres with dimensions of 300–350 angstrom dispersed in a rubbery matrix while the progressive increase of styrene content leads polystyrene spheres to change into cylinders and then into lamellae. A further increase in styrene content turns the material into a plastic matrix in which the dispersed elastomer gradually changes from cylinders up to spheres. The material then behaves as a vulcanised elastomer at low styrene content, when the elastomeric phase is the continuous one, while impact resistance properties predominate at low butadiene content, when the polystyrene phase becomes the continuous one.

A proper pre-definition of both molecular weights and molecular weight distribution of the blocks, as well as their purity, avoids the progressive worsening of the mechanical characteristics due to poor phase separation.

Versalis proprietary SIS technology allows the production of many grades (mainly applied as adhesives for general purpose) characterized by a different percentage of styrene block as well as by different linear or radial molecular structures. Such portfolio of products is continuously improved by our R&D centers through market feedback. All polymer grades are stabilized with a specifically designed antioxidant package.

The Europrene® SIS block copolymers portfolio

Main process parameters

<table>
<thead>
<tr>
<th>Raw material (Isoprene + Styrene)</th>
<th>1,007 kg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Electricity</td>
<td>0.6 MWh</td>
</tr>
<tr>
<td>Steam (medium pressure + low pressure)1</td>
<td>5 MT</td>
</tr>
</tbody>
</table>

1 10 barg and 6 barg, respectively.

Expected consumption related to standard Plant configuration, solvent Cyclopentane, mild site climate, air cooling applied where possible.
Styrene isoprene triblock copolymers are obtained by anionic polymerization initiated by lithium alkyls in cycloaliphatic media as solvent; main features of this class of anionic chain polymerization is the liveliness, i.e. the ability of polymeric chain ends to survive even when monomer is completely depleted and to reinitiate the polymerization reaction when monomer is newly added.

Due to the absence of termination reactions, polymer active chain ends do not inherently terminate, continuously growing up to the complete monomers depletion, which in turn means that average polymer molecular weight can be really predicted from the amount of starting material and the quantity of initiator.

Flexibility is the peculiar aspect of this polymerization technique which allows, under appropriate conditions, the production of thermoplastic elastomers differentiated by composition (i.e. styrene), molecular weight, macrostructure (different coupling efficiency).

Two stages polymerization system is normally used; in this case living chain ends of a styrene-isoprene linear diblock copolymer becomes a triblock SIS copolymer by subsequent addition of a coupling agent, whose relative amount can be varied to obtain different yields of coupled SIS and uncoupled SI polymers.

The ratio between active chain ends and coupling agent determines the architecture of resulting SIS. For special case three stages polymerization can be adopted, in this case no coupling agent is used and the addition of monomers is done in a sequential way.

Attention has been paid in assuring that all chemical residuals from terminating or coupling reactions result inactive towards antioxidant in order to avoid yellowness of SIS copolymer. Based on the above it comes that linear SIS can be obtained from both the three stages polymerization process as well as from the two stages one. Dry solvent (cyclohexane or cyclopentane), styrene, initiator, isoprene and coupling/terminating agent are loaded batchwise to the polymerization reactor; based on a sequence defined by a specific procedure depending on type of polymer to be produced. Solvent and monomers distillation and adsorption operations before loading, as well as blanketing with dry nitrogen of all chemical mix and feed tanks, keep impurities at the lowest level, preventing polymerization poisoning.

When polymerization reaction is completed, the polymer solution is pumped to a blend tank operating at slight pressure. Portion of solvent together with unreacted monomers are flash vaporised. The vapours are condensed and recycled to the wet solvent tank. The blended solution with the antioxidant agents is fed to the stripping section where the solvent is removed by steam stripping in the presence of a dispersing agent for controlling the crumb size. The vapours leaving the stripping section are then condensed and the solvent, separated from water in a decanter, is sent to the wet solvent tank. The crumb slurry is pumped to the finishing unit, where the crumb is dewatered on a shaker screen, from which water is partly recirculated to the strippers and partly sent to waste water treatment. The dewatered crumbs are dried in two mechanical extruders in series, cooled with air, weighed and finally bagged.

High reactor volume (about 50 m³). Capacity up to 50 kt/y for single reaction line is then afforded by using three batch reactors, lowering the investment cost.

Special design of solvent and monomer purification columns allows the removing of light and heavy components by one equipment.

Cyclopentane, cyclohexane or blend, highly compatible with all different polymer compositions, can be used as solvent depending on local climate conditions.

Proper solvent/monomer ratio in batch polymerization beside a defined solvent blend lead to lower steam consumption in stripping operation. Up to 30 % saving in steam consumption by using cyclopentane instead of cyclohexane.

Special design of die plate in dryer system and proper operating condition lead to regular shape of crumb rubber with different density.

High plant capability as well as easy operability due to both specifically designed feeding system for chemicals and batch automation.

Proper selection of antioxidant package as well as of packaging material avoids damages to the marketed pellet, even if incorrectly stored.
Proprietary process technologies portfolio

Biotech
- PROESA® 2G Ethanol and Cellulosic Sugars

Phenol and derivatives
- Cumene (with PBE-1 zeolite based proprietary catalyst)*
- Phenol, Acetone, Alphamethylstyrene*
- High selectivity Cyclohexanone
- Acetone hydrogenation to Isopropanol Alcohol*
- Isopropanol Alcohol to Cumene**
- Aminoximation (with Titanium silicalite based proprietary catalyst TS-1)

DMC and derivatives
- Dimethylcarbonate (via Carbon Monoxide and Methanol)*
- Diphenylcarbonate*

Proprietary catalysts
- Titanium silicalite
- PBE-1 Zeolite
- PBE-2 Zeolite

Styrenics
- Ethylbenzene (with PBE-1 and PBE-2 zeolite based proprietary catalyst)
- Styrene
- GPPS
- HIPS
- EPS suspension polymerization
- ABS continuous mass polymerization
- SAN

Polyethylene
- LDPE
- EVA

Elastomers
- Emulsion-SBR
- HSL Latices
- Solution-SBR
- TPR
- LCBR
- HCBR
- NBR
- Carboxylated latices
- EPDM

* Co-licensing in cooperation with Lummus Technology (a McDermott International Company).
** Close to commercialization.